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Estimation of Air Pollution by Numerical Simulation 
of Advection Diffusion Equation 

Sukriti Kundu, Laek Sazzad Andallah 

Abstract— This paper considers a parabolic type partial differential equation known as Advection Diffusion Equation (ADE) which has been used to 
estimate the concentration of pollutant. The paper reports the analytical solution of the model and studies finite difference scheme for the numerical 
solution of the ADE. In order to exclude any adverse effects of pollutant at environment, a problem of nitrogen diffusion into an advective air flow is an 
excellent model. The paper implements the numerical scheme for some real data for the flow of nitrogen gas into the air flow through uniform tube and 
presents the numerical results for various velocities and diffusion coefficients. 
Keywords: Advection-Diffusion Equation, Air pollution, Analytical Solution, Error Estimation, Finite Difference Scheme, Numerical Implementation, 
Stability Condition. 

1. Introduction 
The smoke from vehicles (combustion in the engine) and 
many factories contain various compound of nitrogen 
which is harmful for our environment. It helps form acid 
rain, contributes to global warming, hampers the growth of 
plants. Mathematical modeling of gas flow is a challenging 
problem and has been of great interest to many researchers. 
In [10], R.N Singh describes the advection diffusion 
equation models in near surface geophysical and 
environmental sciences. In [11], advances in numerical 
simulations and emergence of sophisticated porous 
transport models have significantly improved the study 
and analysis of transport in living tissues. In the current 
perspective of global warming, climate change and air 
pollution, the numerical implementation of Advection 
Diffusion Equation has become an important issue in the 
field of computer simulation techniques. This gives the 
motivation to perform a numerical study of the Advection 
Diffusion Equation (ADE) in order to estimate the 
concentration of pollutant by computing the effect of 
velocity and diffusivity. 
In section 2, we present the description and analytical 
solution of advection diffusion equation based on [2],[3],[4]. 
Section 3 studies the finite different schemes  as two explicit 
centered difference schemes, implicit centered difference 
schemes based on [8] and Crank Nicolson’s scheme 
followed by stability condition [8] and error estimation. 
Section 4 presents a computer programming code for 
implementation of the numerical scheme and perform 
numerical simulation for some real data for the transport of 
nitrogen gas in a uniform tube with infinitesimal cross-
section and compares the results with that of [9]. At section 
5, we present solution surface for nitrogen transportation in 
different time, different velocity and different diffusion 
coefficient. Although in the work of [9],

 
the solution surface for nitrogen transportation was shown 
for analytical solution (by Green Function Method) at final 
time, we present the numerical solution with increase in 
time. 
 
2. Mathematical Formulation 
The Advection Diffusion Equation (ADE) is an important 
partial equation which describes the distribution of 
nitrogen gas in a given cross-sectional area over time. The 
simplest 1D advection diffusion equation is 
 
                        𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜈𝜈 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2
         (1) 

          
With initial condition 

𝐶𝐶(𝑥𝑥, 0) = 𝐶𝐶0(𝑥𝑥);  𝑓𝑓𝑓𝑓𝑓𝑓 −∞ < 𝑥𝑥 < ∞ 

where C is the concentration of the transport substance, D is 
the diffusion constant (here assume uniform in space) and ν 
is the velocity field. The velocity field in turn couples to the 
pressure field of the medium through the Navier-Stokes 
Equations.  
We will define a new coordinate system η, (convective 
coordinates or Lagrangian Coordinates)  η = 𝑥𝑥 − 𝑣𝑣t and 
using this we obtain the analytical solution of (1) is 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) =
1

√4𝜋𝜋𝐷𝐷𝜋𝜋
𝑒𝑒−

(𝜕𝜕−𝑣𝑣𝜕𝜕)2
4𝐷𝐷𝜕𝜕  

This is called the fundamental solution to the advection-
diffusion equation. Though we can solve the problem 
analytically in steady state with simple boundary 
conditions, most physically relevant ADEs appear within 
sets of nonlinear couple’s equations or with nontrivial 
boundary conditions where analytical solutions are not 
possible. Most solvers use either finite difference method 
(FDM) or finite element method (FEM). 

Numerical Solution of Advection-Diffusion Equation: 

The one−dimensional linear advection- diffusion   equation 
is 

∂C
∂t

+ ν ∂C
∂x

= 𝐷𝐷 ∂2C
∂x2

              (2) 
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where 𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏), 𝑡𝑡 ∈  (0,𝑇𝑇) 

with initial condition   𝐶𝐶(𝑥𝑥, 0) = 0 and boundary condition  
𝐶𝐶(0, 𝑡𝑡) = 1,  Cx(∞, t) = 0. 

We discretize space: 

a = x
−12

< x1
2

< x3
2

< ⋯⋯⋯⋯⋯ < x
l−12

= b 

We discretize the time:  

t = t0 < t1 < t2 < ⋯⋯⋯⋯⋯ < tN = T 

By using Forward difference formula in space we obtain 

that 
∂C(xj

n)

∂x
≈

Cj+1
n −Cj

n

∆x
. 

By using backward difference formula in space we obtain 

that 
∂C(xj

n)

∂x
≈

Cj
n−Cj−1

n

∆x
. 

By using central difference formula in space we obtain 

that 
∂C(xj

n)

∂x
≈

Cj+1
n −Cj−1

n

2∆x
. 

By substitution the values of 
∂C(xj

n)

∂t
,
∂C(xj

n)

∂x
 and 

∂2C(xj
n)

∂x2
 (which 

are obtained by 1st order forward difference in time, 
backward difference in space and centered difference in 
space respectively) into  (2), we obtain  

Cjn+1 = (𝛼𝛼 + Cr)uj−1n + (1 − 2α − Cr)ujn + αCj+1n       (3) 

Where α = D∆t   
∆x2

  and  𝐶𝐶𝑟𝑟 = ν∆t
∆x

 

which is the explicit centered difference scheme and it is 
also known as FTBSCS techniques. 

Again by substitution the values of 
∂C(xj

n)

∂t
,
∂C(xj

n)

∂x
 and 

∂2C(xj
n)

∂x2
 

(which are obtained by 1st order forward difference in time 
and centered difference in space respectively) into (2), we 
obtain  

𝐶𝐶𝑗𝑗𝑛𝑛+1 = (𝛼𝛼 − 𝐶𝐶𝑟𝑟/2)𝐶𝐶𝑗𝑗+1𝑛𝑛 + (1 − 2𝛼𝛼)𝐶𝐶𝑗𝑗𝑛𝑛 + (𝛼𝛼 + 𝐶𝐶𝑟𝑟/2)𝐶𝐶𝑗𝑗−1𝑛𝑛      (4) 

Where α = D∆t   
∆x2

  and  𝐶𝐶𝑟𝑟 = ν∆t
∆x

.  

Stability Condition: 

The stability condition of 1D diffusion equation 

 ∂C
∂t

= D ∂2C
∂x2

  is   𝐷𝐷∆𝜕𝜕
∆𝜕𝜕2

≤ 1
2
. 

The stability condition of 1D advection equation  ∂C
∂t

+ ν ∂C
∂x

=
0  is  

                         ν∆t
∆x
≤ 1      

 
For the stability condition of advection-diffusion equation, 

since the second order diffusive term D ∂2C
∂x2

 dominates the 1st 

order term ν ∂C
∂x

. Therefore the explicit central difference 
scheme is stable if the analytical and numerical method is 
also characterized due to the 2nd order diffusion term of 
numerical solution. Thus for large D the stability condition 
of advection-diffusion equation can be considered as the 
same as diffusion equation. 

Therefore the stability condition for explicit centered 
difference scheme of advection-diffusion equation is given 
by  D∆t

∆x2
≤ 1

2
 . 

Error Estimation: 

We have discussed different types of explicit difference 
scheme and analytical solution of advection-diffusion 
equation. Now we shall compute the relative error between 
exact solution and different types of explicit difference 
scheme to determine which scheme is best. We compute the 
relative error in 𝐿𝐿1 − 𝑛𝑛𝑓𝑓𝑓𝑓𝑛𝑛 which is defined by 

  err = ∥𝜕𝜕𝑒𝑒−𝜕𝜕𝑛𝑛∥1
∥𝜕𝜕𝑛𝑛∥

,  

for all time 𝑡𝑡 = 0 to 𝑡𝑡 = 7. Where 𝐶𝐶𝑒𝑒 is the exact solution 
and 𝐶𝐶𝑛𝑛 is the numerical solution computed by the finite 
difference scheme. 

 

Fig1: Error estimation for scheme (3) 

 

Fig1: Error estimation for scheme (4) 
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Comparison of two schemes: 

Now we compute our numerical methods by plotting their 
relative errors simultaneously. 

 

Fig 3: Comparisons of two Explicit  Centered 
Difference Scheme  for v=0.1cm/s, D=0.01𝑐𝑐𝑛𝑛2/𝑠𝑠, ∆𝑥𝑥 =
0.04,∆𝑡𝑡 = 0.007,𝛼𝛼 = 0.04 

From the above figure we observe that the relative errors 
for two explicit centered difference scheme and these error 
for both scheme is shown as below by table 1. 

Serial Time Error for  
scheme 3 

Error for scheme 4 

1 t=.5 0.004 0.003 

2 t=1 0.006 0.005 

3 t=1.25 0.007 0.007 

4 t=4 0.008 0.018 

5 t=6 0.009 0.03 

6 t=7 0.011 0.035 

From the above table we observe that scheme 4 is more 
accurate then scheme 3. So we implement explicit centered 
difference scheme 3 for nitrogen gas flow in any tube.  

4. Results and Discussion 

A 1D channel is designed to contain a uniform advective air 
flow, as shown in figure 4. At the end of the channel, 
nitrogen is injected into the air flow. Another end is 
assumed to be far enough. The pressure is 0.1013 Mpa  the 
temperature 298.15K. by defining the mass fraction of 
nitrogen as the solved variable 𝐶𝐶 = 𝐶𝐶(𝑥𝑥, 𝑡𝑡), the advection 
diffusion process can be formulated as, 

𝐶𝐶𝜕𝜕 + 𝜈𝜈𝐶𝐶𝜕𝜕 − 𝐶𝐶𝜕𝜕𝜕𝜕 = 0, 0 < 𝑥𝑥 < ∞, 0 < 𝑡𝑡 < ∞ 

𝐶𝐶(𝑥𝑥, 0) = 0,   𝐶𝐶(1, 𝑡𝑡) =1     

 

 

 

Fig 4: One dimensional advection diffusion of nitrogen into 
air flow 

This is a boundary value problem in a Dirichlet type, 
defined in a semi-infinite domain. Here we present 
numerical simulation results for nitrogen transportation 
with time increasing, diffusion increasing and for different 
cell size. Our aim is to show that for the environment 
pollution, any substance with bigger diffusion than another 
causes great harm. Here we shall show that a bigger 𝐷𝐷 
results in a wider nitrogen front, or a bigger diffusion 
distance. For different coefficients ranging from 0.001 
𝑐𝑐𝑛𝑛2 𝑠𝑠⁄  to 1 𝑐𝑐𝑛𝑛2 𝑠𝑠⁄  , as shown in Fig 7 to 10. 

If 𝐷𝐷 = 1 𝑐𝑐𝑛𝑛2 𝑠𝑠⁄  and 𝜈𝜈 = 2 𝑐𝑐𝑛𝑛 𝑠𝑠,⁄   the theoretical nitrogen 
mass friction distribution at time 𝑡𝑡 = 5𝑠𝑠𝑒𝑒𝑐𝑐,  for the 
numerical scheme (which is described at the previous 
section) is shown in Figure 5 which show that how the 
nitrogen concentration distributed within the tube. 

 

Fig 5: One dimensional advection diffusion with D =
1 cm2 s⁄  at time t = 5sec with ν = 2 cm s⁄ . 

Now keeping spatial grid size, diffusion coefficient and 
velocity fixed we observe the following figure for different 
time space 𝑡𝑡 = 𝑠𝑠𝑒𝑒𝑐𝑐, 𝑡𝑡 = 2𝑠𝑠𝑒𝑒𝑐𝑐, 𝑡𝑡 = 4𝑠𝑠𝑒𝑒𝑐𝑐, 𝑡𝑡 = 5𝑠𝑠𝑒𝑒𝑐𝑐  respectively. 
Then for 𝐃𝐃 = 𝟏𝟏 𝐜𝐜𝐜𝐜 𝐬𝐬, 𝛎𝛎 = 𝟐𝟐 𝐜𝐜𝐜𝐜 𝐬𝐬⁄⁄ ,the solution appeared is 
given below 

 

Fig 6: One dimensional advection diffusion with D =
1 cm2 s⁄  at different temporal grid size with ν = 2 cm s⁄ . 
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Figure 6 shows that as time is increasing from t=1sec to 
t=5sec the level of the nitrogen gas is increasing from the 
boundary. Now keeping spatial grid size and diffusion 
coefficient we observe the following figures for different 
temporal size and velocity. Then for 𝐃𝐃 = 𝟏𝟏 𝐜𝐜𝐜𝐜𝟐𝟐 𝐬𝐬⁄ the 
solution appeared is given below 

 

Fig 7: Nitrogen Concentration with D = 1 cm2 s⁄  at different 
temporal grid size with ν = 1.5 cm s⁄ . 

 

Fig 8: Nitrogen Concentration with D = 1 cm2 s⁄  at different 
temporal grid size with ν = 1 cm s⁄ . 

From figure 6, 7 and 8 we observe that with the decreasing 
of the value of v, the speed of nitrogen flow is decreasing. 

Now keeping spatial grid size and velocity (𝛎𝛎 = 𝟐𝟐 𝐜𝐜𝐜𝐜 𝐬𝐬⁄ ) we 
observe three cases by the following figures for different 
temporal size and different diffusion coefficients. Then for 
𝛎𝛎 = 𝟐𝟐 𝐜𝐜𝐜𝐜 𝐬𝐬⁄ the solution appeared is given below 

 

Fig 9: Nitrogen Concentration with velocityν = 2 cm s⁄  at 
different temporal grid size with  D = 1 cm2 s⁄  

 

Fig 10: Nitrogen Concentration with velocity ν = 2 cm s⁄  at 
different temporal grid size with  D = 0.1 cm2 s⁄  

 

Fig 11: Nitrogen Concentration with velocityν = 2 cm s⁄  at 
different temporal grid size with  D = 0.01 cm2 s⁄  

 

Fig 12: Nitrogen Concentration with velocityν = 2 cm s⁄  at 
different temporal grid size with  D = 0.001 cm2 s⁄  
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Following figure13 shows numerical scheme for different 
diffusion co-efficient for fixed time 𝑡𝑡 = 5 and velocity ν =
2 cm s⁄ . 

 

Fig 13: manifest that a bigger D results in a wider nitrogen 
front or a bigger diffusion coefficient. 

As we know that the stability condition of advection 
diffusion equation is 𝐷𝐷∆𝜕𝜕

∆𝜕𝜕2
≤ 1

2
 the course of action will be 

continued until this stability condition is satisfied. Thus as 
diffusion coefficient is increasing from 0.001 to 1, the 
nitrogen wave front is becoming wider than before. 

5. Conclusion 

There is growing concern in understanding and evaluating 
the nitrogen transportation at the air. Our purpose is to 
estimate the nitrogen wave front for different diffusion 
coefficient. The problem by the PDE which is known as 
advection-diffusion equation. Although this problem can be 
solved analytically, but in order to incorporate initial and 
boundary data it is completely unavoidable to use 
numerical method .We have studied explicit differences 
schemes for the numerical solutions of the advection-
diffusion equation of nitrogen transportation in air flow. In 
the numerical simulation of nitrogen transportation 
experiment we have used real data [9] and the results are in 
a very good agreement with the results presented in [9].It is 
thus verified that the advection-diffusion equation is a very 
useful mathematical model to describe nitrogen 
transportation in air flow and explicit finite difference 
scheme is quite suitable to perform the numerical 
simulation of the nitrogen transportation in air flow. It may 
be more effective experiment using 2D advection-diffusion 
equation passing through porous media or the Crank-
Nicolson method may be better than the explicit finite 
difference scheme and we left this as our future work. 
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